
Appendix 1.

The Distribution of OS with Crossovers

Let TTP ∼ Exp(λ1), X ∼ Exp(λ2), where TTP is the time to progression and X is the survival time

prior to progression. These distributions are the sub-distributions in a competing risks model. It follows

that PFS = min(TTP,X) ∼ Exp(λ1 + λ2). Furthermore, let OS′ ∼ Exp(λ3) for patients who do not

crossover and OS′ ∼ Exp(λ4) for crossover patients, where OS′ is post-progression survival time.

The probability density function for OS′ is

f(OS′) = pλ4 exp−λ4t +(1− p)λ3 exp−λ3t

The probability distribution function for OS can be written as

FOS(t) = P (OS ≤ t)

= P (OS ≤ t | OS = PFS)P (OS = PFS) + P (OS ≤ t | OS > PFS)P (OS > PFS)

where

P (OS ≤ t | OS = PFS) = P (PFS ≤ t) = 1− exp−(λ1+λ2)t

P (OS = PFS) = P (X ≤ TTP ) =
λ2

λ1 + λ2

P (OS > PFS) = P (X > TTP ) =
λ1

λ1 + λ2

P (OS ≤ t | OS > PFS) = P (PFS +OS′ ≤ t) = P (PFS ≤ t−OS′)
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The latter equation can be written as

P (PFS ≤ t−OS′)

=

∫ t

0

[∫ t−v

0
(λ1 + λ2) exp−(λ1+λ2)u du][pλ4 exp−λ4v +λ3(1− p) exp−λ3v

]
dv

=

∫ t

0

(
1− exp−(λ1+λ2)(t−v)

) [
pλ4 exp−λ4v +λ3(1− p) exp−λ3v

]
dv

=

∫ t

0

[
pλ4 exp−λ4v +λ3(1− p) exp−λ3v −pλ4 exp−(λ1+λ2)(t−v)−λ4v

− λ3(1− p) exp−(λ1+λ2)(t−v)−λ3v
]
dv

= p(1− exp−λ4t)− (1− p)(exp−λ3t−1) +
pλ4

λ1 + λ2 − λ4

(
exp−(λ1+λ2)t− exp−λ4t

)
− (1− p)λ3
λ1 + λ2 − λ3

(
exp−λ3t− exp−(λ1+λ2)t

)
= 1− λ1 + λ2

λ1 + λ2 − λ4
p exp−λ4t− λ1 + λ2

λ1 + λ2 − λ3
(1− p) exp−λ3t

+

(
pλ4

λ1 + λ2 − λ4
+

(1− p)λ3
λ1 + λ2 − λ3

)
exp−(λ1+λ2)t

Thus we can write

FOS(t) = P (OS ≤ t)

=
(

1− exp−(λ1+λ2)t
) λ2
λ1 + λ2

+

[
1− λ1 + λ2

λ1 + λ2 − λ4
p exp−λ4t− λ1 + λ2

λ1 + λ2 − λ3
(1− p) exp−λ3t

]
λ1

λ1 + λ2

+

[(
pλ4

λ1 + λ2 − λ4
+

(1− p)λ3
λ1 + λ2 − λ3

)
exp−(λ1+λ2)t

]
λ1

λ1 + λ2

= 1− pλ1 exp−λ4t

λ1 + λ2 − λ4
− (1− p)λ1 exp−λ3t

λ1 + λ2 − λ3

+
exp−(λ1+λ2)t

λ1 + λ2

[
pλ1λ4

λ1 + λ2 − λ4
+

(1− p)λ1λ3
λ1 + λ2 − λ3

− λ2
]
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The probability density function for OS is

fOS(t) =
pλ1λ4

λ1 + λ2 − λ4
exp−λ4t +

(1− p)λ1λ3
λ1 + λ2 − λ3

exp−λ3t

−
[

pλ1λ4
λ1 + λ2 − λ4

+
(1− p)λ1λ3
λ1 + λ2 − λ3

− λ2
]

exp−(λ1+λ2)t

and the hazard function for OS is

λOS(t) =
fOS(t)

SOS(t)

where SOS(t) = 1− FOS(t).
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Appendix 2

Simulation Approach for Determining D∗

For each scenario and each iteration, 5,000 trials are simulated and a two-sample logrank test comparing

the treatment arms with respect to OS is computed for each trial. The simulations were carried out using

the R programming language (version 3.0.1). Since the required D∗ in a non-proportional situation depends

on the accrual time T and the accrual rate a, where N = aT , to determine D∗ we start the iteration with

an initial value D0 and an initial sample size N0 = γD0,where γ ≥ 1 is pre-specified. Then we simulate

the power 1 − β0 for the (N0, D0) pair. For the next iteration, D1 =
⌈
D0 + ε0

⌉
, N1 = γD1. Continue in

this fashion, where for k ≥ 0 we define Dk+1 =
⌈
Dk + εk

⌉
, Nk+1 = γDk+1, with the starting value D0 and

increments εk defined below. The process stops as soon as |β − βk| ≤ δ, a value that can be chosen by the

user. We used δ = 0.0025 in this paper. That is, we stop at the first iteration for which the simulated

power 1− βk is within 0.0025 of the required power 1− β. The starting value D0 is:

D0 =

⌈
4(Zα/2 + Zβ)2

(ln ∆)2

⌉

where ∆ is taken to be the ratio of the hypothesized median survival times in the two groups. This is the

required number of events in the case of proportional hazards which of course does not hold here. The

increments εk are defined as:

εk =
4

(ln ∆)2
[
(Zα/2 + Zβ)2 − (Zα/2 + Zβk)2

]
Note that εk < 0 if 1− βk > 1− β and εk > 0 if 1− βk < 1− β.

When the stopping rule is met, we perform an additional independent validation step using 10,000

simulations with the selected Dk and Nk. If the simulated power 1−β′
k in this additional step also satisfies∣∣∣β − β′

k

∣∣∣ ≤ 0.0025 then we stop and declare D∗ = Dk. But if
∣∣∣β − β′

k

∣∣∣ > 0.0025 we continue the process
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using β
′
k in the next step. In practice we have found that the process stops after a very few iterations and

the validation simulation almost always confirms the result without the need for additional iterations.

Example below illustrates the algorithm for determing D∗ when p = 0.75. With the design parameters

listed in Table 2 and γ = 1.1, the starting value D0 is

D0 =

⌈
4(Zα/2 + Zβ)2

(ln ∆)2

⌉
= 818

and the initial sample size N0 = 1.1D0 = 900. The simulated power 1− β0 for the the N0 and D0 pair

is 0.8526. Since |β − β0| > 0.0025, we continue the process and the increments ε0 is

ε0 =
4

(ln ∆)2
[
(Zα/2 + Zβ)2 − (Zα/2 + Zβ0)2

]
= 113.692

For the next iteration, we have D1 =
⌈
D0 + ε0

⌉
= 932, N1 = γD1 = 1025. The results of subsequent

iterations are given in Table 5.

Table 5: Results for Determing D∗ When p = 0.75

k Nk Dk 1− βk |β − βk| εk

0 900 818 0.8526 0.0474 113.692

1 1025 932 0.8948 0.0052 14.6007

2 1042 947 0.8980 0.0020 5.6952

To validate the selected D2 = 947 and N2 = 1042, an independent step using 10,000 simulations

is performed. The simulated power 1 − β′
2 = 0.8984 satisfies the

∣∣∣β − β′
2

∣∣∣ ≤ 0.0025 requirement, which

validates the selected D2 = 947. We stop and declare that D∗ = D2 = 947 for p = 0.75. The R code for

determing D∗ is also provided as supplemental material.
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